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Intercalation of polymers in clay layers has been widely
accepted as the most advanced method to synthesize
nanophase organic-inorganic hybrids. Here, the clay
consists of both anionically charged layers of alu-
minum/magnesium silicates and small cations such as
sodium or potassium located in silicate interlayer gal-
leries [1]. These silicate layers exchange organic cation
molecules and swell under certain solvents. Thereby,
the polymer solution intercalation method is based on
a solvent quality, i.e., whether the polymer is soluble
and the silicate layers are swellable [2]. The driving
force for polymer intercalation into a layered silicate
from solution is the enthalpy gained by desorption of
solvent molecules, which compensates for the entropy
loss due to the confinement of intercalated chains [3].

Polyaniline (PANI) is one of the best known conduct-
ing polymers for commercial applications, because of
its environmental stability, good processability, and rel-
atively low cost. However, it contains large equilibrium
polylene rings with torsional displacement out of the
plane defined by the ring bridging atoms (amine/imine
nitrogens). Because of the stiffness, it is very difficult to
dissolve the PANI in common organic solvents. How-
ever, PANTI’s derivatives including substituent groups
(—CH3,—OCH3 or —OC;Hs) in monomer or poly-
meric chain show an excellent solubility in various or-
ganic solvents. Despite of its lower conductivity than
that of PANI, the poly(o-ethoxyaniline) (PEOA) sub-
stituted with —OC,H5 in PANI has attracted much
attention due to its good solubility and corrosion re-
sistance in metallic surfaces [4]. The conducting poly-
mer/clay nanocomposite system has also been used not
only to enhance the processability (colloidal stability
or mechanical strength) [5, 6] but also to improve phys-
ical properties. Polypyrrole/montmorillonite (MMT)
nanocomposites were synthesized by an emulsion poly-
merization using dodecylbenzene sulfonic acid [7], and
PANI/clay nanocomposites [5, 8, 9] have been reported
to improve physical properties including electrical con-
ductivity and electrorheological performance.

In the work reported in this letter, we synthesized
soluble PEOA and prepared PEOA/clay nanocompos-
ites. Here, the organic clay was a natural MMT mod-
ified with a quaternary ammonium salt of dimethyl,
hydrogenated tallow, 2-ethylhexyl quaternary ammo-
nium. Characteristics of PEOA/clay nanocomposites
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were investigated for two different compositions of the
PEOA. Electrical conductivity can be controlled by the
clay contents in the intercalated PEOA/clay nanocom-
posites.

Atfirstthe PEOA, as a soluble conducting polymer in
organic solvent, was synthesized. A 0.6 mol ethoxyani-
line monomer (Aldrich, USA) in 4 x 107* m?® of 1 M
HCI was stirred for 2 h, and the polymerization was
initiated at 25 °C by adding a solution of 0.36 mol
ammonium persulfate as an oxidizing agent in 2.4 x
10~* m? of 1 M HCI. Products of PEOA (pH = 1) were
dried at 25 °C for 2 days using a vacuum oven. The
organic clay (OMMT), Cloisite 25A (Southern Clay
Product, USA), was swollen in chloroform for 1 day.
The PEOA particles were simultaneously dissolved in
chloroform. Fixed amounts of clay and PEOA in chlo-
roform solutions were mixed together and stirred for
1 day. This mixed solution was filtered and dried at
25 °C for 2 days using a vacuum oven. The powder
form of the products was obtained. Fourier Transform
Infrared (FT-IR) spectroscopy (Perkin Elmer System
2000) was used to identify the chemical structure of
the PEOA which was prepared as a disk, dispersed
in KBr. The intercalation of PEOA/clay nanocompos-
ite was examined via transmission electron microscpoe
(TEM) (CM 200, Philips). The X-ray diffraction (XRD)
measurement, using the Rigaku DMAX 2500 (A =
0.154 nm) diffractometer, was also performed. The
conductivity of PEOA particles and nanocomposites
was measured with a pressed disk of polymer using a
2-probe method with silver electrodes on each side [7].
The pellets of PEOA particles were prepared using a
1.3 x 1072 m KBr pellet die, and the pellet resistance
was measured using a picoammeter (Keithley model
487, Cleveland, USA) with a conductivity cell. The
conductivity (o) was then obtained from the following
Equation 1,

o=d/(A-R)

Here d is the thickness (m), A is the surface area (m?)
and R is the resistance of the pellet (1/S). o values
are compared by intercalation, adjusting doping and
dedoping of PEOA particles.

Fig. 1 shows the FT-IR spectrum of the synthesized
PEOA and PEOA/clay nanocomposites. Characteristic
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Figure 1 FT-IR spectra of the PEOA and PEOA/clay nanocomposites.

peaks of the PEOA are designated by the aromatic ether
at 1000 and 1300 cm !, In addition, these peaks show
the aromatic C—H at 824 cm™', aromatic amine at
1144 and 1309 cm™!, and aromatic C—C at 1490 and
1586 cm™!. Based on these characteristic peaks from
the PEOA, we confirmed nanocomposite formation.

Fig. 2 displays the sectional micrograph of the mi-
crotomed nanocomposites obtained from the TEM.
The TEM images of PEOA/clay nanocomposites with
PEOA components of 25% (a) and 75% (b) show suc-
cessful intercalation of PEOA into clay gallery layers.
In addition, the soluble PEOA particles are well dis-
persed in clay interlayers. Although these micrographs
exhibit the swelling of clay, it is difficult to analyze the
extension of interlayer spacing quantitatively.

Fig. 3 indicates the XRD pattern for PEOA/clay
nanocomposites with different PEOA contents. The
peak at 26 = 4.8° (d-spacing of 1.84 nm from Bragg’s
law) corresponds to crystallographic planes of the pris-
tine organoclay layer, (001) basal spacing reflection.
The d-spacing expansion was identified from the shift
of the diffraction peak to lower angles: 26 = 4.18° (d-
spacing of 2.11 nm) for PEOA25/clay and 3.18° for
PEOA75/clay (d-spacing of 2.78 nm). These spacings
indicate the degree of intercalation of clay with PEOA
[10, 11].

Electrical conductivity was calculated from Equation
1 for two different contents of PEOA. Electrical con-
ductivities of pure PEOA, PEOA 25, and PEOA 75
were measured to be 2.0 x 1072,7.3 x 1073, and 6.2 x
107> S/m, respectively. This effect of particle conduc-
tivity was an important factor for the delocalization of
charge carriers and weakening the interchain intercala-
tion. The changes of conductivity was attributed to the
fact that intercalation into clay takes a role of resistance
of the PEOA [12]. The electrical conductivity could be
controlled by the intercalation of PEOA contents into
the clay interlayers. Thereby, PEOA/clay nanocompos-
ites with relatively low electrical conductivity can be
adopted as electrorheological (ER) materials. The ER
fluid exhibits reversible changes in its rheological prop-
erties as a function of electric field strength [10].

In conclusion, the PEOA was prepared by chemi-
cal oxidation polymerization and PEOA/clay nanocom-
posites were intercalated via a solvent casting process.
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Figure 2 TEM images of PEOA/clay nanocomposites for two different
PEOA contents.(a) 25% and (b) 75%.
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Figure 3 XRD pattern of PEOA, clay, and PEOA/clay nanocomposites.

The d-spacing of PEOA/clay nanocomposites was in-
creased to be 2.11 nm for PEOA2S5 and 2.78 nm for
PEOA75 from the original d-spacing, 1.84 nm of the
pristine clay. The PEOA75/clay nanocomposites exhib-
ited larger d-spacing than PEOA25/clay. Electrical con-
ductivity depended on the PEOA intercalation into clay
gallery, and became smaller than that of pure PEOA.
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